Коэффициент корреляции. Коэффициенты корреляции При значении коэффициента корреляции равном 1 связь

7.3.1. Коэффициенты корреляции и детерминации. Можно количественно определить тесноту связи между факторами и ее направленность (прямую или обратную), вычислив:

1) если нужно определить носящую линейный характер взаимосвязь между двумя факторами, - парный коэффициент корреляции : в 7.3.2 и 7.3.3 рассмотрены операции вычисления парного линейного коэффициента корреляции по Бравэ–Пирсону (r ) и парного рангового коэффициента корреляции по Спирмену (r );

2) если мы хотим определить взаимосвязь между двумя факторами, но зависимость эта явно нелинейная - то корреляционное отношение ;

3) если мы хотим, определить связь между одним фактором и некоторой совокупностью других факторов - то (или, что то же самое, «коэффициент множественной корреляции»);

4) если мы хотим выявить изолированно связь одного фактора только с конкретным другим, входящим в группу факторов, воздействующих на первый, для чего приходится считать влияние всех остальных факторов неизменным - то частный (парциальный) коэффициент корреляции .

Любой коэффициент корреляции (r, r) не может по абсолютной величине превышать 1, то есть –1 < r (r) < 1). Если получено значение 1, то это значит, что рассматриваемая зависимость не статистическая, а функциональная, если 0 - корреляции нет вообще.

Знак при коэффициенте корреляции определяет направ­ленность связи: знак «+» (либо отсутствие знака) означает, что связь прямая (положительная ), знак «–» - что связь обратная (отрицательная ). К тесноте связи знак никакого отношения не имеет

Коэффициент корреляции характеризует статистическую взаимосвязь. Но часто нужно определить другого типа зависимость, а именно: каков вклад некоторого фактора в формирование другого связанного с ним фактора. Такого рода зависимость с некоторой долей условности характеризуется коэффициентом детерминации (D ), определяемым по формуле D = r 2 ´100% (где r - коэффициент корреляции по Бравэ–Пирсону, см. 7.3.2). Если измерения проводились в шкале порядка (шкале рангов) , то с некоторым ущербом для достоверности можно вместо значения r подставить в формулу значение r (коэффициента корреляции по Спирмену, см. 7.3.3).

Например, если мы получили как характеристику зависимости фактора Б от фактора А коэффициент корреляции r = 0,8 или r = –0,8, то D = 0,8 2 ´100% = 64%, то есть около 2½ 3. Следовательно, вклад фактора А и его изменений в формирование фактора Б составляет примерно 2½ 3 от суммарного вклада всех вообще факторов.

7.3.2. Коэффициент корреляции по Бравэ-Пирсону. Процедуру вычисления коэффициента корреляции по Бравэ–Пирсону (r ) можно применять только в тех случаях, когда связь рассматривается на базе выборок, имеющих нормальное распределение частот (нормальное распределение ) и полученных измерениями в шкалах интервалов или отношений. Расчетная формула этого коэффициента корреляции:



å (x i – )(y i – )

r = .

n×s x ×s y

Что показывает коэффициент корреляции? Во-первых, знак при коэффициенте корреляции показывает направленность связи, а именно: знак «–» свидетельствует о том, что связь обратная , или отрицательная (имеет место тенденция: с убыванием значений одного фактора соответствующие значения другого фактора растут, а с возрастанием - убывают), а отсутствие знака или знак «+» свидетельствуют о прямой , или положительной связи (имеет место тенденция: с увеличением значений одного фактора увеличиваются и значения другого, а с уменьшением - уменьшаются). Во-вторых, абсолютная (не зависящая от знака) величина коэффициента корреляции говорит о тесноте (силе) связи. Принято считать (в достаточной мере условно): при значениях r < 0,3 корреляция очень слабая , нередко ее просто не принимают в расчет, при 0,3 £ r < 5 корреляция слабая , при 0,5 £ r < 0,7) - средняя , при 0,7 £ r £ 0,9) - сильная и, наконец, при r > 0,9 - очень сильная. В нашем случае (r » 0,83) связь обратная (отрицательная) и сильная.

Напомним: значения коэффициента корреляции могут находиться в интервале от –1 до +1. Выход значения r за эти пределы свидетельствует о том, что в расчетах допущена ошибка . Если r = 1, то это значит, что связь не статистическая, а функциональная - чего в спорте, биологии, медицине практически не бывает. Хотя при небольшом количестве измерений случай ный подбор значений, дающий картину функциональной связи, возможен, но такой случай тем менее вероятен, чем больше объем сопоставляемых выборок (n), то есть количество пар сравниваемых измерений.

Расчетная таблица (табл. 7,1)строится соответственно формуле.

Таблица 7.1.

Расчетная таблица для вычисления по Бравэ–Пирсону

x i y i (x i – ) (x i – ) 2 (y i – ) (y i – ) 2 (x i – )(y i – )
13,2 4,75 0,2 0,04 –0,35 0,1225 – 0,07
13,5 4,7 0,5 0,25 – 0,40 0,1600 – 0,20
12,7 5,10 – 0,3 0,09 0,00 0,0000 0,00
12,5 5,40 – 0,5 0,25 0,30 0,0900 – 0,15
13,0 5,10 0,0 0,00 0,00 0.0000 0,00
13,2 5,00 0,1 0,01 – 0,10 0,0100 – 0,02
13,1 5,00 0,1 0,01 – 0,10 0,0100 – 0,01
13,4 4,65 0,4 0,16 – 0,45 0,2025 – 0,18
12,4 5,60 – 0,6 0,36 0,50 0,2500 – 0,30
12,3 5,50 – 0,7 0,49 0,40 0,1600 – 0,28
12,7 5,20 –0,3 0,09 0,10 0,0100 – 0,03
åx i =137 =13,00 åy i =56,1 =5,1 å(x i – ) 2 = =1,78 å(y i – ) 2 = = 1,015 å(x i – )(y i – )= = –1,24

Поскольку s х = ï ï = ï ï» 0,42, а

s y =ï ï» 0,32, r » –1,24ï (11´0,42´0,32)» –1,24ï 1,48 » –0,83 .

Иными словами, нужно очень твердо знать, что коэффициент корреляции не может по абсолютной величине превосходить 1,0. Это нередко позволяет избежать грубейших ошибок, точнее - найти и исправить допущенные при подсчетах ошибки.

7.3.3. Коэффициент корреляции по Спирмену . Как уже было сказано, применять коэффициент корреляции по Бравэ–Пирсону (r) можно только в тех случаях, когда анализируемые факторы по распределению частот близки к нормальному и значения вариант получены измерениями обязательно в шкале отношений или в шкале интервалов, что бывает, если они выражены физическими единицами. В остальных случаях находят коэффициент корреляции по Спирмену (r ). Впрочем, этот коэффициент можно применять и в случаях, когда разрешено (и желательно! ) применять коэффициент корреляции по Бравэ-Пирсону. Но следует иметь в виду, что процедура определения коэффициента по Бравэ-Пирсону обладает большей мощностью («разрешающей способностью »), поэтому r более информативен, чем r . Даже при большом n отклонение r может быть порядка ±10%.

Таблица 7.2 Расчетная формула коэффици-

x i y i R x R y |d R | d R 2 ента корреляции по Спирмену

13,2 4,75 8,5 3,0 5,5 30,25 r = 1 – . Вос

13,5 4,70 11,0 2,0 9,0 81,00 пользуемся нашим примером

12,7 5,10 4,5 6,5 2,0 4,00 для расчета r , но построим

12,5 5,40 3,0 9,0 6,0 36,00 иную таблицу (табл.7.2).

13,0 5,10 6,0 6,5 0,5 0,25 Подставим значения:

13,2 5,00 8,5 4,5 4,0 16,00 r = 1– =

13,1 5,00 7,0 4,5 2,5 6,25 =1– 2538:1320 » 1–1,9 » – 0,9.

13,4 4,65 10,0 1,0 9,0 81,00 Мы видим: r оказался немного

12,4 5,60 2,0 11,0 9,0 81,00 больше, чем r , но это разли-

12,3 5,50 1,0 10,0 9,0 81,00 чие не очень велико. Ведь при

12,7 5,20 4,5 8,0 3,5 12,25 таком малом n значения r и r

åd R 2 = 423 очень уж приблизительны, мало достоверны, их действительное значение может колебаться в широких пределах, поэтому различие r иr в 0,1 малосущественно. Обычно r рассматривают как аналог r , но только менее точный . Знаки при r и r показывает направленность связи.

7.3.4. Применение и проверка достоверности коэффициентов корреляции. Определение степени корреляционной зависимости между факторами необходимо для управления развитием нужного нам фактора: для этого приходится влиять на другие факторы, существенно влияющие на него, и нужно знать меру их действенности. Знать про взаимосвязь факторов нужно для разработки или выбора готовых тестов: информативность теста определяется корреляцией его результатов с проявле­ниями интересующего нас признака или свойства. Без знания корреляций невозможны любые формы отбора.

Выше было отмечено, что в спортивной и вообще педагогической, медицинской и даже экономической и социологической практике большой интерес представляет определение того вклада , который один фактор вносит в формирование другого . Это связано с тем, что помимо рассматриваемого фактора-причины на целевой (интересующий нас) фактор действуют, давая каждый тот или иной вклад в него, и другие.

Считается, что мерой вклада каждого фактора-причины может служить коэффициент детерминации D i = r 2 ´100%. Так, например, если r = 0,6, т.е. связь между факторами А и Б средняя, то D = 0,6 2 ´100% = 36%. Зная, таким образом, что вклад фактора А в формирование фактора Б приблизительно 1½ 3, можно, например уделять целенаправленному развитию этого фактора приблизительно 1½ 3 тренировочного времени. Если же коэффициент корреляции r = 0,4 , то D = r 2 100% =16%, или примерно 1½ 6 - в два с лишним раза меньше, и уделять его развитию по этой логике следует соответственно лишь 1½ 6 часть тренировочного времени.

Величины D i для разных существенных факторов дают приблизительное представление о количественном взаимоот­ношении их влияний на интересующий нас целевой фактор, ради совершенствования которого мы, собственно, и работаем над другими факторами (например, прыгун в длину с разбега работает над повышением скорости своего спринтерского бега, так как оно является тем фактором, который дает самый значительный вклад в формирование результата в прыжках).

Напомним, что определяя D можно вместо r поставить r , хотя, конечно, точность определения оказывается ниже.

На основе выборочного (рассчитанного по выборочным данным) коэффициента корреляции нельзя делать вывод о достоверности факта наличия связи между рассматриваемыми факторами вообще. Для того, чтобы сделать такой вывод с той или иной степенью обоснованности, используют стандартные критерии значимости корреляции . Их применение предполагает линейную зависимость между факторами и нормальное распределение частот в каждом из них (имея в виду не выборочное, а генеральное их представление).

Можно, например, применить t-критерии Стьюдента. Его рас-

четная формула: t p = –2 , где k - исследуемый выборочный коэффициент корреляции, a n - объем сопоставляемых выборок. Полученное расчетное значение t-критерия (t р)сравнивают с табличным при выбранном нами уровне значимости и числе степеней свободы n = n – 2. Чтобы избавиться от расчетной работы, можно воспользоваться специальной таблицей критических значений выборочных коэффициентов корреляции (см. выше), соответствующих наличию достоверной связи между факторами (с учетом n и a ).

Таблица 7.3.

Граничные значений достоверности выборочного коэффициента корреляции

Число степеней свободы при определении коэффициентов корреляции принимают равным 2 (т.е. n = 2) Указанные в табл. 7.3 значения имеют нижней границей доверительного интервала истинного коэффициента корреляции 0, то есть при таких значениях нельзя утверждать, что корреляция вообще имеет место. При значении выборочного коэффициента корреляции выше указанного в таблице можно при соответствующем уровне значимости считать, что истинный коэффициент корреляции не равен нулю.

Но ответ на вопрос, есть ли реальная связь между рассматриваемыми факторами, оставляет место для другого вопроса: в каком интервале лежит истинное значение коэффициента корреляции, каким он может быть на самом деле, при бесконечно большом n ? Этот интервал для любого конкретного значения r и n сопоставляемых факторов можно рассчитать, но удобнее пользоваться системой графиков (номограммой ), где каждая пара кривых, построенная для не которого указанного над ними n , соответствует границам интервала.

Рис. 7.4. Доверительные границы выборочного коэффициента корреляции (a = 0,05). Каждая кривая соответствует указанному над ней n .

Обратясь к номограмме на рис. 7.4, можно определить интервал значений истинного коэффициента корреляции для вычисленных значений выборочного коэффициента корреляции при a = 0,05.

7.3.5. Корреляционные отношения. Если парная корреляция нелинейна , нельзя вычислять коэффициент корреляции, определяют корреляционные отношения . Обязательное требование: признаки должны быть измерены в шкале отношений или в шкале интервалов. Можно вычислять корреляционную зависимость фактора X от фактора Y и корреляционную зависимость фактора Y от фактора X - они различаются. При небольшом объеме n рассматриваемых выборок, представляющих факторы, для вычисления корреляционных отношений можно пользоваться формулами:

корреляционное отношение h x ½ y = ;

корреляционное отношение h y ½ x = .

Здесь и - средние арифметические выборок X и Y, и - внутриклассовые средние арифметические. Tо есть - среднее арифметическое тех значений в выборке фактора Х, с которыми сопряжены одинаковые значения в выборке фактора Y (например, если в факторе X имеются значения 4, 6, и 5, с которыми в выборке фактора Y сопряжены 3 варианты с одинаковым значением 9, то = (4+6+5)½ 3 = 5). Соответственно - среднее арифметическое тех значений в выборке фактора Y, с которыми сопряжены одинаковые значения в выборке фактора Х. Приведем пример и проведем расчет:

Х: 75 77 78 76 80 79 83 82 ; Y: 42 42 43 43 43 44 44 45 .

Таблица 7.4

Расчетная таблица

х i y i x y х i – х (х i – х ) 2 х i – х y (x i x y ) 2
–4 –1
–2
–3 –2
–1
–3
x=79 y=43 S=76 S=28

Следовательно, h y ½ x = » 0,63.

7.3.6. Частные и множественный коэффициенты корреляции. Чтобы оценить зависимость между 2-мя факторами, вычисляя коэффициенты корреляции, мы как бы по умолчанию предполагаем, что никакие другие факторы на эту зависимость никакого воздействия не оказывают. В реальности дело обстоит не так. Так, на зависимость между весом и ростом очень существенно влияют калорийность питания, величина систематической физической нагрузки, наследственность и др. Когда нужно при оценке связи между 2-мя факторами учесть существенное влияние других факторов и в то же время как бы изолироваться от них, считая их неизменными , вычисляют частные (иначе - парциальные ) коэффициенты корреляции.

Пример: нужно оценить парные зависимости между 3-мя существенно действующими факторами X, Y и Z. Обозначим r XY (Z) частный (парциальный) коэффициент корреляции между факторами X и Y (при этом величину фактора Z считаем неизменной), r ZX (Y) - частный коэффициент корреляции между факторами Z и X (при неизменном значении фактора Y), r YZ (X) - частный коэффициент корреляции между факторами Y и Z (при неизменном значении фактора X). Используя вычисленные простые парные (по Бравэ-Пирсону) коэффициенты корреляции r XY , r XZ и r YZ , м

ожно вычислить частные (парциальные) коэффициенты корреляции по формулам:

r XY – r XZ ´r YZ r XZ – r XY ´r ZY r ZY –r ZX ´r YZ

r XY (Z) = ; r XZ (Y) = ; r ZY (Х) =

Ö(1–r 2 XZ)(1–r 2 YZ) Ö(1– r 2 XY)(1–r 2 ZY) Ö(1–r 2 ZX)(1–r 2 YX)

И частные коэффициенты корреляции могут принимать значения от –1 до +1. Возведя их в квадрат, получают соответствующие частные коэффициенты детерминации , называемые также частными мерами определенности (умножив на 100, выразим в %%). Частные коэффициенты корреляции больше или меньше отличаются от простых (полных) парных коэффициентов, что зависит от силы влияния на них 3-го фактора (как бы неизменного). Нулевая гипотеза (Н 0), то есть гипотеза об отсутствии связи (зависимости) между факторами X и Y, проверяется (при общем количество признаков k ) вычислением t-критерия по формуле: t Р = r XY (Z) ´ (n –k) 1 ½ 2 ´ (1–r 2 XY (Z)) –1 ½ 2 .

Если t Р < t a n , гипотеза принимается (считаем, что зависимости нет), если же t Р ³ t a n - гипотеза опровергается, то есть считается, что зависимость действительно имеет место. t a n берется по таблице t -критерия Стьюдента, причем k - количество учитываемых факторов (в нашем примере 3), число степеней свободы n = n – 3. Другие частные коэффициенты корреляции проверяют аналогично (в формулу вместо r XY (Z) подставляют соответственно r XZ (Y) или r ZY (X)).

Таблица 7.5

Исходные данные

Ö (1 – 0,71 2)(1 – 0,71 2) Ö (1 – 0,5)(1 – 0,5)

Для оценки зависимости фактора Х от совместного действия нескольких факторов (здесь факторы Y и Z), вычисляют значения простых парных коэффициентов корреляции и, используя их, вычисляют множественный коэффициент корреляции r X (YZ) :

Ö r 2 XY + r 2 XZ – 2r XY ´ r XZ ´ r YZ

r X (YZ) = .

Ö 1 – r 2 YZ

7.2.7. Коэффициент ассоциации. Нередко требуется количественно оценить зависимость между качественными признаками, т.е. такими признаками, которые нельзя представить (охарактеризовать) количественно, которые неизмеримы . Например, стоит задача выяснить, существует ли зависимость между спортивной специализацией занимающихся и такими личностными свойствами, как интравертность (направленность личности на явления собственного субъективного мира) и экстравертность (направленность личности на мир внешних объектов). Условные обозначения представим в табл. 7.6.

Таблица 7.6.

X (лет) Y (раз) Z (раз) X (лет) Y (раз) Z (раз)
Признак 1 Признак 2 Интравертность Экстравертность
Спортивные игры а b
Гимнастика с d

Очевидно, что числами, имеющимися в нашем распоряжении, здесь могут быть только частоты распределений. В таком случае вычисляют коэффициент ассоциации (другое название «коэффициент сопряженности »). Рассмотрим простейший случай: связь между двумя парами признаков, при этом вычисленный коэффициент сопряженности называют тетрахорическим (см. табл.).

Таблица 7.7.

а =20 b = 15 a + b = 35
с =15 d = 5 c + d = 20
a + c = 35 b + d = 20 n = 55

Вычисления производим по формуле:

ad – bc 100 – 225 –123

Вычисление коэффициентов ассоциации (коэффициентов сопряжения) при большем количестве признаков связано с расчетами по аналогичной матрице соответствующего порядка.

Регрессионный анализ позволяет оценить, как одна переменная зависит от другой и каков разброс значений зависимой переменной вокруг прямой, определяющей зависимость. Эти оценки и соответствующие доверительные интервалы позволяют предсказать значение зависимой переменной и определить точность этого предсказания.

Результаты регрессионного анализа можно представить только в достаточно сложной цифровой или графической форме. Однако нас часто интересует не предсказание значения одной переменной по значению другой, а просто характеристика тесноты (силы) связи между ними, при этом выраженная одним числом.

Эта характеристика называется коэффициентом корреляции, обычно ее обозначают буквой г. Коэффициент корреляции мо-

жет принимать значения от -1 до +1. Знак коэффициента корреляции показывает направление связи (прямая или обратная), а абсолютная величина - тесноту связи. Коэффициент, равный -1, определяет столь же жесткую связь, что и равный 1. В отсутствие связи коэффициент корреляции равен нулю.

На рис. 8.10 приведены примеры зависимостей и соответствующие им значения г. Мы рассмотрим два коэффициента корреляции.

Коэффициент корреляции Пирсона предназначен для описания линейной связи количественных признаков; как и регресси
онный анализ, он требует нормальности распределения. Когда говорят просто о «коэффициенте корреляции», почти всегда имеют в виду коэффициент корреляции Пирсона, именно так мы и будем поступать.

Коэффициент ранговой корреляции Спирмена можно использовать, когда связь нелинейна-и не только для количественных, но и для порядковых признаков. Это непараметрический метод, он не требует какого-либо определенного типа распределения.

О количественных, качественных и порядковых признаках мы уже говорили в гл. 5. Количественные признаки - это обычные числовые данные, такие, как рост, вес, температура. Значения количественного признака можно сравнить между собой и сказать, какое из них больше, на сколько и во сколько раз. Например, если один марсианин весит 15 г, а другой 10, то первый тяжелее второго и в полтора раза и на 5 г. Значения порядкового признака тоже можно сравнить, сказав, какое из них больше, но нельзя сказать, ни на сколько, ни во сколько раз. В медицине порядковые признаки встречаются довольно часто. Например, результаты исследования влагалищного мазка по Папаниколау оценивают по такой шкале: 1) норма, 2) легкая дисплазия, 3) умеренная дисплазия, 4) тяжелая дисплазия, 5) рак in situ. И количественные, и порядковые признаки можно расположить по порядку - на этом общем свойстве основана большая группа непараметрических критериев, к которым относится и коэффициент ранговой корреляции Спирмена. С другими непараметрическими критериями мы познакомимся в гл. 10.

Коэффициент корреляции Пирсона

И все же, почему для описания тесноты связи нельзя воспользоваться регрессионным анализом? В качестве меры тесноты связи можно было бы использовать остаточное стандартное отклонение. Однако если поменять местами зависимую и независимую переменные, то остаточное стандартное отклонение, как и другие показатели регрессионного анализа, будет иным.

Взглянем на рис. 8.11. По известной нам выборке из 10 марсиан построены две линии регрессии. В одном случае вес - зависимая переменная, во втором - независимая. Линии регрессии заметно разли-



20

Если поменять местами х и у, уравнение регрессии получится другим, а коэф- ■ корреляции останется прежним.

чаются. Получается, что связь роста с весом одна, а веса с ростом - другая. Асимметричность регрессионного анализа - вот что мешает непосредственно использовать его для характеристики силы связи. Коэффициент корреляции, хотя его идея вытекает из регрессионного анализа, свободен от этого недостатка. Приводим формулу.

r Y(X - X)(Y - Y)

&((- X) S(y - Y)2"

где X и Y - средние значения переменных X и Y. Выражение для r «симметрично» -поменяв местами Xи Y, мы получим ту же величину. Коэффициент корреляции принимает значения от -1 до +1. Чем теснее связь, тем больше абсолютная величина коэффициента корреляции. Знак показывает направление связи. При r > 0 говорят о прямой корреляции (с увеличением одной переменной другая также возрастает), при r Возьмем пример с 10 марсианами, который мы уже рассматривали с точки зрения регрессионного анализа. Вычислим коэффициент корреляции. Исходные данные и промежуточные результаты вычислений приведены в табл. 8.3. Объем выборки n = 10, средний рост

X = £ X/n = 369/10 = 36,9 и вес Y = £ Y/n = 103,8/10 = 10,38.

Находим Щ- X)(Y- Y) = 99,9, Щ- X)2 = 224,8, £(Y - Y)2 = 51,9.

Подставим полученные значения в формулу для коэффициента корреляции:

224,8 х 51,9 ’ "

Величина r близка к 1, что говорит о тесной связи роста и веса. Чтобы лучше представить себе, какой коэффициент корреляции следует считать большим, а какой незначительным, взгляни-

Таблица 8.3. Вычисление коэффициента корреляции
X Y X -X Y-Y (X -X)(Y-Y) (X -X)2 (Y-Y)2
31 7,8 -5,9 -2,6 15,3 34,8 6,8
32 8,3 -4,9 -2,1 10,3 24,0 4,4
33 7,6 -3,9 -2,8 10,9 15,2 7,8
34 9,1 -2,9 -1,3 3,8 8,4 1,7
35 9,6 -1,9 -0,8 1,5 3,6 0,6
35 9,8 -1,9 -0,6 1,1 3,6 0,4
40 11,8 3,1 1,4 4,3 9,6 2,0
41 12,1 4,1 1,7 7,0 16,8 2,9
42 14,7 5,1 4,3 22,0 26,0 18,5
46 13,0 9,1 2,6 23,7 82,8 6,8
369 103,8 0,0 0,2 99,9 224,8 51,9


те на табл. 8.4 - в ней приведены коэффициенты корреляции для примеров, которые мы разбирали ранее.

Связь регрессии и корреляции

Все примеры коэффициентов корреляции (табл. 8.4) мы первоначально использовали для построения линий регрессии. Действительно, между коэффициентом корреляции и параметрами регрессионного анализа существует тесная связь, которую мы сейчас продемонстрируем. Разные способы представления коэффициента корреляции, которые мы при этом получим, позволят лучше понять смысл этого показателя.

Вспомним, что уравнение регрессии строится так, чтобы минимизировать сумму квадратов отклонений от линии регрессии.


Обозначим эту минимальную сумму квадратов S (эту величину называют остаточной суммой квадратов). Сумму квадратов отклонений значений зависимой переменной Y от ее среднего Y обозначим S^. Тогда:

Величина г2 называется коэффициентом детерминации - это просто квадрат коэффициента корреляции. Коэффициент детерминации показывает силу связи, но не ее направленность.

Из приведенной формулы видно, что если значения зависимой переменной лежат на прямой регрессии, то S = 0, и тем самым r = +1 или r = -1, то есть существует линейная связь зависимой и независимой переменной. По любому значению независимой переменной можно совершенно точно предсказать значение зависимой переменной. Напротив, если переменные вообще не связаны между собой, то Soci = SofSisi Тогда r = 0.

Видно также, что коэффициент детерминации равен той доле общей дисперсии S^, которая обусловлена или, как говорят, объясняется линейной регрессией.

Остаточная сумма квадратов S связана с остаточной дисперсией s2y\x соотношением Socj = (п - 2) s^, а общая сумма квадратов S^ с дисперсией s2 соотношением S^ = (п - 1)s2 . В таком случае

r2 = 1 _ n _ 2 sy\x п _1 sy

Эта формула позволяет судить о зависимости коэффициента корреляции от доли остаточной дисперсии в полной дисперсии

six/s2y Чем эта доля меньше, тем больше (по абсолютной величине) коэффициент корреляции, и наоборот.

Мы убедились, что коэффициент корреляции отражает тесноту линейной связи переменных. Однако если речь идет о предсказании значения одной переменной по значению другой, на
коэффициент корреляции не следует слишком полагаться. Например, данным на рис. 8.7 соответствует весьма высокий коэффициент корреляции (г = 0,92), однако ширина доверительной области значений показывает, что неопределенность предсказания довольно значительна. Поэтому даже при большом коэффициенте корреляции обязательно вычислите доверительную область значений.


И под конец приведем соотношение коэффициента корреляции и коэффициента наклона прямой регрессии b:

где b - коэффициент наклона прямой регрессии, sx и sY - стандартные отклонения переменных.

Если не брать во внимание случай sx = 0, то коэффициент корреляции равен нулю тогда и только тогда, когда b = 0. Этим фактом мы сейчас и воспользуемся для оценки статистической значимости корреляции.

Статистическая значимость корреляции

Поскольку из b = 0 следует г = 0, гипотеза об отсутствии корреляции равнозначна гипотезе о нулевом наклоне прямой регрессии. Поэтому для оценки статистической значимости корреляции можно воспользоваться уже известной нам формулой для оценки статистической значимости отличия b от нуля:

Здесь число степеней свободы v = n - 2. Однако если коэффициент корреляции уже вычислен, удобнее воспользоваться формулой:

Число степеней свободы здесь также v = п - 2.

При внешнем несходстве двух формул для t, они тождественны. Действительно, из того, что


r 2 _ 1 - n_ 2 Sy]x_

Подставив значение sy^x в формулу для стандартной ошибки

Животный жир и рак молочной железы

В опытах на лабораторных животных показано, что высокое содержание животного жира в рационе повышает риск рака молочной железы. Наблюдается ли эта зависимость у людей? К. Кэррол собрал данные о потреблении животных жиров и смертности от рака молочной железы по 39 странам. Результат представлен на рис. 8.12А. Коэффициент корреляции между потреблением животных жиров и смертностью от рака молочной железы оказался равен 0,90. Оценим статистическую значимость корреляции.

0,90 1 - 0,902 39 - 2

Критическое значение t при числе степеней свободы v = 39 - 2 = 37 равно 3,574, то Єсть меньше полученного нами. Таким образом, при уровне значимости 0,001 можно утверждать, что существует корреляция между потреблением животных жиров и смертностью от рака молочной железы.

Теперь проверим, связана ли смертность с потреблением растительных жиров? Соответствующие данные приведены на рис. 8.12Б. Коэффициент корреляции равен 0,15. Тогда

1 - 0,152 39 - 2

Даже при уровне значимости 0,10 вычисленное значение t меньше критического. Корреляция статистически не значима.

​ Критерий корреляции Пирсона – это метод параметрической статистики, позволяющий определить наличие или отсутствие линейной связи между двумя количественными показателями, а также оценить ее тесноту и статистическую значимость. Другими словами, критерий корреляции Пирсона позволяет определить, есть ли линейная связь между изменениями значений двух переменных. В статистических расчетах и выводах коэффициент корреляции обычно обозначается как r xy или R xy .

1. История разработки критерия корреляции

Критерий корреляции Пирсона был разработан командой британских ученых во главе с Карлом Пирсоном (1857-1936) в 90-х годах 19-го века, для упрощения анализа ковариации двух случайных величин. Помимо Карла Пирсона над критерием корреляции Пирсона работали также Фрэнсис Эджуорт и Рафаэль Уэлдон .

2. Для чего используется критерий корреляции Пирсона?

Критерий корреляции Пирсона позволяет определить, какова теснота (или сила) корреляционной связи между двумя показателями, измеренными в количественной шкале. При помощи дополнительных расчетов можно также определить, насколько статистически значима выявленная связь.

Например, при помощи критерия корреляции Пирсона можно ответить на вопрос о наличии связи между температурой тела и содержанием лейкоцитов в крови при острых респираторных инфекциях, между ростом и весом пациента, между содержанием в питьевой воде фтора и заболеваемостью населения кариесом.

3. Условия и ограничения применения критерия хи-квадрат Пирсона

  1. Сопоставляемые показатели должны быть измерены в количественной шкале (например, частота сердечных сокращений, температура тела, содержание лейкоцитов в 1 мл крови, систолическое артериальное давление).
  2. Посредством критерия корреляции Пирсона можно определить лишь наличие и силу линейной взаимосвязи между величинами. Прочие характеристики связи, в том числе направление (прямая или обратная), характер изменений (прямолинейный или криволинейный), а также наличие зависимости одной переменной от другой - определяются при помощи регрессионного анализа .
  3. Количество сопоставляемых величин должно быть равно двум. В случае анализ взаимосвязи трех и более параметров следует воспользоваться методом факторного анализа .
  4. Критерий корреляции Пирсона является параметрическим , в связи с чем условием его применения служит нормальное распределение сопоставляемых переменных. В случае необходимости корреляционного анализа показателей, распределение которых отличается от нормального, в том числе измеренных в порядковой шкале, следует использовать коэффициент ранговой корреляции Спирмена .
  5. Следует четко различать понятия зависимости и корреляции. Зависимость величин обуславливает наличие корреляционной связи между ними, но не наоборот.

Например, рост ребенка зависит от его возраста, то есть чем старше ребенок, тем он выше. Если мы возьмем двух детей разного возраста, то с высокой долей вероятности рост старшего ребенка будет больше, чем у младшего. Данное явление и называется зависимостью , подразумевающей причинно-следственную связь между показателями. Разумеется, между ними имеется и корреляционная связь , означающая, что изменения одного показателя сопровождаются изменениями другого показателя.

В другой ситуации рассмотрим связь роста ребенка и частоты сердечных сокращений (ЧСС). Как известно, обе эти величины напрямую зависят от возраста, поэтому в большинстве случаев дети большего роста (а значит и более старшего возраста) будут иметь меньшие значения ЧСС. То есть, корреляционная связь будет наблюдаться и может иметь достаточно высокую тесноту. Однако, если мы возьмем детей одного возраста , но разного роста , то, скорее всего, ЧСС у них будет различаться несущественно, в связи с чем можно сделать вывод о независимости ЧСС от роста.

Приведенный пример показывает, как важно различать фундаментальные в статистике понятия связи и зависимости показателей для построения верных выводов.

4. Как рассчитать коэффициента корреляции Пирсона?

Расчет коэффициента корреляции Пирсона производится по следующей формуле:

5. Как интерпретировать значение коэффициента корреляции Пирсона?

Значения коэффициента корреляции Пирсона интерпретируются исходя из его абсолютных значений. Возможные значения коэффициента корреляции варьируют от 0 до ±1. Чем больше абсолютное значение r xy – тем выше теснота связи между двумя величинами. r xy = 0 говорит о полном отсутствии связи. r xy = 1 – свидетельствует о наличии абсолютной (функциональной) связи. Если значение критерия корреляции Пирсона оказалось больше 1 или меньше -1 – в расчетах допущена ошибка.

Для оценки тесноты, или силы, корреляционной связи обычно используют общепринятые критерии, согласно которым абсолютные значения r xy < 0.3 свидетельствуют о слабой связи, значения r xy от 0.3 до 0.7 - о связи средней тесноты, значения r xy > 0.7 - о сильной связи.

Более точную оценку силы корреляционной связи можно получить, если воспользоваться таблицей Чеддока :

Оценка статистической значимости коэффициента корреляции r xy осуществляется при помощи t-критерия, рассчитываемого по следующей формуле:

Полученное значение t r сравнивается с критическим значением при определенном уровне значимости и числе степеней свободы n-2. Если t r превышает t крит, то делается вывод о статистической значимости выявленной корреляционной связи.

6. Пример расчета коэффициента корреляции Пирсона

Целью исследования явилось выявление, определение тесноты и статистической значимости корреляционной связи между двумя количественными показателями: уровнем тестостерона в крови (X) и процентом мышечной массы в теле (Y). Исходные данные для выборки, состоящей из 5 исследуемых (n = 5), сведены в таблице.

При изучении общественного здоровья и здравоохранения в научных и практических целях исследователю часто приходится проводить статистический анализ связей между факторными и результативными признаками статистический совокупности (причинно-следственная связь) или определение зависимости параллельных изменений нескольких признаков этой совокупности от какой либо третьей величины (от общей их причины). Необходимо уметь изучать особенности этой связи, определять ее размеры и направление, а также оценивать ее достоверность. Для этого используются методы корреляции.

  1. Виды проявления количественных связей между признаками
    • функциональная связь
    • корреляционная связь
  2. Определения функциональной и корреляционной связи

    Функциональная связь - такой вид соотношения между двумя признаками, когда каждому значению одного из них соответствует строго определенное значение другого (площадь круга зависит от радиуса круга и т.д.). Функциональная связь характерна для физико-математических процессов.

    Корреляционная связь - такая связь, при которой каждому определенному значению одного признака соответствует несколько значений другого взаимосвязанного с ним признака (связь между ростом и массой тела человека; связь между температурой тела и частотой пульса и др.). Корреляционная связь характерна для медико-биологических процессов.

  3. Практическое значение установления корреляционной связи . Выявление причинно-следственной между факторными и результативными признаками (при оценке физического развития, для определения связи между условиями труда, быта и состоянием здоровья, при определении зависимости частоты случаев болезни от возраста, стажа, наличия производственных вредностей и др.)

    Зависимость параллельных изменений нескольких признаков от какой-то третьей величины. Например, под воздействием высокой температуры в цехе происходят изменения кровяного давления, вязкости крови, частоты пульса и др.

  4. Величина, характеризующая направление и силу связи между признаками . Коэффициент корреляции, который одним числом дает представление о направлении и силе связи между признаками (явлениями), пределы его колебаний от 0 до ± 1
  5. Способы представления корреляционной связи
    • график (диаграмма рассеяния)
    • коэффициент корреляции
  6. Направление корреляционной связи
    • прямая
    • oбратная
  7. Сила корреляционной связи
    • сильная: ±0,7 до ±1
    • средняя: ±0,3 до ±0,699
    • слабая: 0 до ±0,299
  8. Методы определения коэффициента корреляции и формулы
    • метод квадратов (метод Пирсона)
    • ранговый метод (метод Спирмена)
  9. Методические требования к использованию коэффициента корреляции
    • измерение связи возможно только в качественно однородных совокупностях (например, измерение связи между ростом и весом в совокупностях, однородных по полу и возрасту)
    • расчет может производиться с использованием абсолютных или производных величин
    • для вычисления коэффициента корреляции используются не сгруппированные вариационные ряды (это требование применяется только при вычислении коэффициента корреляции по методу квадратов)
    • число наблюдений не менее 30
  10. Рекомендации по применению метода ранговой корреляции (метод Спирмена)
    • когда нет необходимости в точном установлении силы связи, а достаточно ориентировочных данных
    • когда признаки представлены не только количественными, но и атрибутивными значениями
    • когда ряды распределения признаков имеют открытые варианты (например, стаж работы до 1 года и др.)
  11. Рекомендации к применению метода квадратов (метод Пирсона)
    • когда требуется точное установление силы связи между признаками
    • когда признаки имеют только количественное выражение
  12. Методика и порядок вычисления коэффициента корреляции

    1) Метод квадратов

    2) Ранговый метод

  13. Схема оценки корреляционной связи по коэффициенту корреляции
  14. Вычисление ошибки коэффициента корреляции
  15. Оценка достоверности коэффициента корреляции,полученного методом ранговой корреляции и методом квадратов

    Способ 1
    Достоверность определяется по формуле:

    Критерий t оценивается по таблице значений t с учетом числа степеней свободы (n - 2), где n - число парных вариант. Критерий t должен быть равен или больше табличного, соответствующего вероятности р ≥99%.

    Способ 2
    Достоверность оценивается по специальной таблице стандартных коэффициентов корреляции. При этом достоверным считается такой коэффициент корреляции, когда при определенном числе степеней свободы (n - 2), он равен или более табличного, соответствующего степени безошибочного прогноза р ≥95%.

на применение метода квадратов

Задание: вычислить коэффициент корреляции, определить направление и силу связи между количеством кальция в воде и жесткостью воды, если известны следующие данные (табл. 1). Оценить достоверность связи. Сделать вывод.

Таблица 1

Обоснование выбора метода. Для решения задачи выбран метод квадратов (Пирсона), т.к. каждый из признаков (жесткость воды и количество кальция) имеет числовое выражение; нет открытых вариант.

Решение .
Последовательность расчетов изложена в тексте, результаты представлены в таблице. Построив ряды из парных сопоставляемых признаков, обозначить их через х (жесткость воды в градусах) и через у (количество кальция в воде в мг/л).

Жесткость воды
(в градусах)
Количество кальция в воде
(в мг/л)
d х d у d х х d у d x 2 d y 2
4
8
11
27
34
37
28
56
77
191
241
262
-16
-12
-9
+7
+14
+16
-114
-86
-66
+48
+98
+120
1824
1032
594
336
1372
1920
256
144
81
49
196
256
12996
7396
4356
2304
9604
14400
М х =Σ х / n М у =Σ у / n Σ d х x d у =7078 Σ d х 2 =982 Σ d y 2 =51056
М х =120/6=20 М y =852/6=142
  1. Определить средние величины M x ряду вариант "х" и М у в ряду вариант "у" по формулам:
    М х = Σх/n (графа 1) и
    М у = Σу/n (графа 2)
  2. Найти отклонение (d х и d у) каждой варианты от величины вычисленной средней в ряду "x" и в ряду "у"
    d х = х - М х (графа 3) и d y = у - М у (графа4).
  3. Найти произведение отклонений d x х d y и суммировать их: Σ d х х d у (графа 5)
  4. Каждое отклонение d x и d у возвести в квадрат и суммировать их значения по ряду "х" и по ряду "у": Σ d x 2 = 982 (графа 6) и Σ d y 2 = 51056 (графа 7).
  5. Определить произведение Σ d x 2 х Σ d y 2 и из этого произведения извлечь квадратный корень
  6. Полученные величины Σ (d x x d y) и √(Σd x 2 x Σd y 2) подставляем в формулу расчета коэффициента корреляции:
  7. Определить достоверность коэффициента корреляции:
    1-й способ. Найти ошибку коэффициента корреляции (mr xy) и критерий t по формулам:

    Критерий t = 14,1, что соответствует вероятности безошибочного прогноза р > 99,9%.

    2-й способ. Достоверность коэффициента корреляции оценивается по таблице "Стандартные коэффициенты корреляции" (см. приложение 1). При числе степеней свободы (n - 2)=6 - 2=4, наш расчетный коэффициент корреляции r xу = + 0,99 больше табличного (r табл = + 0,917 при р = 99%).

    Вывод. Чем больше кальция в воде, тем она более жесткая (связь прямая, сильная и достоверная : r ху = + 0,99, р > 99,9%).

    на применение рангового метода

    Задание: методом рангов установить направление и силу связи между стажем работы в годах и частотой травм, если получены следующие данные:

    Обоснование выбора метода: для решения задачи может быть выбран только метод ранговой корреляции, т.к. первый ряд признака "стаж работы в годах" имеет открытые варианты (стаж работы до 1 года и 7 и более лет), что не позволяет использовать для установления связи между сопоставляемыми признаками более точный метод - метод квадратов.

    Решение . Последовательность расчетов изложена в тексте, результаты представлены в табл. 2.

    Таблица 2

    Стаж работы в годах Число травм Порядковые номера (ранги) Разность рангов Квадрат разности рангов
    X Y d(х-у) d 2
    До 1 года 24 1 5 -4 16
    1-2 16 2 4 -2 4
    3-4 12 3 2,5 +0,5 0,25
    5-6 12 4 2,5 +1,5 2,25
    7 и более 6 5 1 +4 16
    Σ d 2 = 38,5

    Стандартные коэффициенты корреляции, которые считаются достоверными (по Л.С. Каминскому)

    Число степеней свободы - 2 Уровень вероятности р (%)
    95% 98% 99%
    1 0,997 0,999 0,999
    2 0,950 0,980 0,990
    3 0,878 0,934 0,959
    4 0,811 0,882 0,917
    5 0,754 0,833 0,874
    6 0,707 0,789 0,834
    7 0,666 0,750 0,798
    8 0,632 0,716 0,765
    9 0,602 0,885 0,735
    10 0,576 0,858 0,708
    11 0,553 0,634 0,684
    12 0,532 0,612 0,661
    13 0,514 0,592 0,641
    14 0,497 0,574 0,623
    15 0,482 0,558 0,606
    16 0,468 0,542 0,590
    17 0,456 0,528 0,575
    18 0,444 0,516 0,561
    19 0,433 0,503 0,549
    20 0,423 0,492 0,537
    25 0,381 0,445 0,487
    30 0,349 0,409 0,449

    1. Власов В.В. Эпидемиология. - М.: ГЭОТАР-МЕД, 2004. - 464 с.
    2. Лисицын Ю.П. Общественное здоровье и здравоохранение. Учебник для вузов. - М.: ГЭОТАР-МЕД, 2007. - 512 с.
    3. Медик В.А., Юрьев В.К. Курс лекций по общественному здоровью и здравоохранению: Часть 1. Общественное здоровье. - М.: Медицина, 2003. - 368 с.
    4. Миняев В.А., Вишняков Н.И. и др. Социальная медицина и организация здравоохранения (Руководство в 2 томах). - СПб, 1998. -528 с.
    5. Кучеренко В.З., Агарков Н.М. и др.Социальная гигиена и организация здравоохранения (Учебное пособие) - Москва, 2000. - 432 с.
    6. С. Гланц. Медико-биологическая статистика. Пер с англ. - М., Практика, 1998. - 459 с.

Коэффициент корреляции (или линейный коэффициент корреляции) обозначается как «r» (в редких случаях как «ρ») и характеризует линейную корреляцию (то есть взаимосвязь, которая задается некоторым значением и направлением) двух или более переменных. Значение коэффициента лежит между -1 и +1, то есть корреляция бывает как положительной, так и отрицательной. Если коэффициент корреляции равен -1, имеет место идеальная отрицательная корреляция; если коэффициент корреляции равен +1, имеет место идеальная положительная корреляция. В остальных случаях между двумя переменными наблюдается положительная корреляция, отрицательная корреляция или отсутствие корреляции. Коэффициент корреляции можно вычислить вручную, с помощью бесплатных онлайн-калькуляторов или с помощью хорошего графического калькулятора.

Шаги

Вычисление коэффициента корреляции вручную

    Соберите данные. Перед тем как приступить к вычислению коэффициента корреляции, изучите данные пары чисел. Лучше записать их в таблицу, которую можно расположить вертикально или горизонтально. Каждую строку или столбец обозначьте как «х» и «у».

    • Например, даны четыре пары значений (чисел) переменных «х» и «у». Можно создать следующую таблицу:
      • x || y
      • 1 || 1
      • 2 || 3
      • 4 || 5
      • 5 || 7
  1. Вычислите среднее арифметическое «х». Для этого сложите все значения «х», а затем полученный результат разделите на количество значений.

    Найдите среднее арифметическое «у». Для этого выполните аналогичные действия, то есть сложите все значения «у», а затем сумму разделите на количество значений.

    Вычислите стандартное отклонение «х». Вычислив средние значения «х» и «у», найдите стандартные отклонения этих переменных. Стандартное отклонение вычисляется по следующей формуле:

    Вычислите стандартное отклонение «у». Выполните действия, которые описаны в предыдущем шаге. Воспользуйтесь той же формулой, но подставьте в нее значения «у».

    Запишите основную формулу для вычисления коэффициента корреляции. В эту формулу входят средние значения, стандартные отклонения и количество (n) пар чисел обеих переменных. Коэффициент корреляции обозначается как «r» (в редких случаях как «ρ»). В этой статье используется формула для вычисления коэффициента корреляции Пирсона.

    Вы вычислили средние значения и стандартные отклонения обеих переменных, поэтому можно воспользоваться формулой для вычисления коэффициента корреляции. Напомним, что «n» – это количество пар значений обеих переменных. Значение других величин были вычислены ранее.

    • В нашем примере вычисления запишутся так:
    • ρ = (1 n − 1) Σ (x − μ x σ x) ∗ (y − μ y σ y) {\displaystyle \rho =\left({\frac {1}{n-1}}\right)\Sigma \left({\frac {x-\mu _{x}}{\sigma _{x}}}\right)*\left({\frac {y-\mu _{y}}{\sigma _{y}}}\right)}
    • ρ = (1 3) ∗ {\displaystyle \rho =\left({\frac {1}{3}}\right)*} [ (1 − 3 1 , 83) ∗ (1 − 4 2 , 58) + (2 − 3 1 , 83) ∗ (3 − 4 2 , 58) {\displaystyle \left({\frac {1-3}{1,83}}\right)*\left({\frac {1-4}{2,58}}\right)+\left({\frac {2-3}{1,83}}\right)*\left({\frac {3-4}{2,58}}\right)}
      + (4 − 3 1 , 83) ∗ (5 − 4 2 , 58) + (5 − 3 1 , 83) ∗ (7 − 4 2 , 58) {\displaystyle +\left({\frac {4-3}{1,83}}\right)*\left({\frac {5-4}{2,58}}\right)+\left({\frac {5-3}{1,83}}\right)*\left({\frac {7-4}{2,58}}\right)} ]
    • ρ = (1 3) ∗ (6 + 1 + 1 + 6 4 , 721) {\displaystyle \rho =\left({\frac {1}{3}}\right)*\left({\frac {6+1+1+6}{4,721}}\right)}
    • ρ = (1 3) ∗ 2 , 965 {\displaystyle \rho =\left({\frac {1}{3}}\right)*2,965}
    • ρ = (2 , 965 3) {\displaystyle \rho =\left({\frac {2,965}{3}}\right)}
    • ρ = 0 , 988 {\displaystyle \rho =0,988}
  2. Проанализируйте полученный результат. В нашем примере коэффициент корреляции равен 0,988. Это значение некоторым образом характеризует данный набор пар чисел. Обратите внимание на знак и величину значения.

    • Так как значение коэффициента корреляции положительно, между переменными «х» и «у» имеет место положительная корреляция. То есть при увеличении значения «х», значение «у» тоже увеличивается.
    • Так как значение коэффициента корреляции очень близко к +1, значения переменных «х» и «у» сильно взаимосвязаны. Если нанести точки на координатную плоскость, они расположатся близко к некоторой прямой.

    Использование онлайн-калькуляторов для вычисления коэффициента корреляции

    1. В интернете найдите калькулятор для вычисления коэффициента корреляции. Этот коэффициент довольно часто вычисляется в статистике. Если пар чисел много, вычислить коэффициент корреляции вручную практически невозможно. Поэтому существуют онлайн-калькуляторы для вычисления коэффициента корреляции. В поисковике введите «коэффициент корреляции калькулятор» (без кавычек).

      Введите данные. Ознакомьтесь с инструкциями на сайте, чтобы правильно ввести данные (пары чисел). Крайне важно вводить соответствующие пары чисел; в противном случае вы получите неверный результат. Помните, что на разных веб-сайтах различные форматы ввода данных.

      • Например, на сайте http://ncalculators.com/statistics/correlation-coefficient-calculator.htm значения переменных «х» и «у» вводятся в двух горизонтальных строках. Значения разделяются запятыми. То есть в нашем примере значения «х» вводятся так: 1,2,4,5, а значения «у» так: 1,3,5,7.
      • На другом сайте, http://www.alcula.com/calculators/statistics/correlation-coefficient/ , данные вводятся по вертикали; в этом случае не перепутайте соответствующие пары чисел.
    2. Вычислите коэффициент корреляции. Введя данные, просто нажмите на кнопку «Calculate», «Вычислить» или аналогичную, чтобы получить результат.

    Использование графического калькулятора

    1. Введите данные. Возьмите графический калькулятор, перейдите в режим статистических вычислений и выберите команду «Edit» (Редактировать).

      • На разных калькуляторах нужно нажимать различные клавиши. В этой статье рассматривается калькулятор Texas Instruments TI-86.
      • Чтобы перейти в режим статистических вычислений, нажмите – Stat (над клавишей «+»). Затем нажмите F2 – Edit (Редактировать).
    2. Удалите предыдущие сохраненные данные. В большинстве калькуляторов введенные статистические данные хранятся до тех пор, пока вы не сотрете их. Чтобы не спутать старые данные с новыми, сначала удалите любую сохраненную информацию.

      • С помощью клавиш со стрелками переместите курсор и выделите заголовок «xStat». Затем нажмите Clear (Очистить) и Enter (Ввести), чтобы удалить все значения, введенные в столбец xStat.
      • С помощью клавиш со стрелками выделите заголовок «yStat». Затем нажмите Clear (Очистить) и Enter (Ввести), чтобы удалить все значения, введенные в столбец уStat.
    3. Введите исходные данные. С помощью клавиш со стрелками переместите курсор в первую ячейку под заголовком «xStat». Введите первое значение и нажмите Enter. В нижней части экрана отобразится «xStat (1) = __», где вместо пробела будет стоять введенное значение. После того как вы нажмете Enter, введенное значение появится в таблице, а курсор переместится на следующую строку; при этом в нижней части экрана отобразится «xStat (2) = __».

      • Введите все значения переменной «х».
      • Введя все значения переменной «х», с помощью клавиш со стрелками перейдите в столбец yStat и введите значения переменной «у».
      • После ввода всех пар чисел нажмите Exit (Выйти), чтобы очистить экран и выйти из режима статистических вычислений.

Что еще почитать